
34-Channel Symmetric Row Driver

Features

- HVCMOS[®] technology
- Symmetric row drive (reduces latent imaging in ACTFEL displays)
- Output voltage up to +230V
- Low power level shifting
- Source/sink current minimum 70mA
- Shift register speed 4.0MHz
- Pin-programmable shift direction

General Description

The HV7022C is a low-voltage serial to high-voltage parallel converter with push-pull outputs. It is especially suited for use as a symmetric row driver in AC thin-film electroluminescent (ACTFEL) displays. The HV7022C offers 34 output lines, a direction (DIR) pin to give CW or CCW shift register loading, output enable (OE), and polarity (POL) control. After data is entered (on the falling edge of CLK), a logic high will cause the output to swing to VPP if POL is high, or to GND if POL is low.

Functional Block Diagram

Ordering Information

Part Number	Package	Packing
HV7022DJ-C*	44-Lead Quad Cerpac	96/Tray
HV7022DJ-C* M919	44-Lead Quad Cerpac	500/Reel
HV5622PJ-C-G	44-Lead PLCC	27/Tube
HV5622PJ-C-G M903	44-Lead PLCC	500/Reel

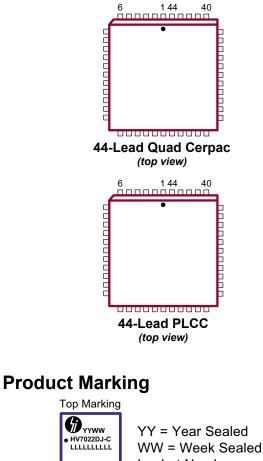
-G denotes a lead (Pb)-free / RoHS compliant package

Hi-Rel process flow available.

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V _{DD}	-0.3V to +15V
Supply voltage, V _{PP}	-0.3V to +250V
Logic input levels	-0.3V to V_{DD} +0.3V
Ground current ¹	1.5A
Continuous total power dissipation ² Plastic Ceramic	1200mW 1500mW
Operating temperature range Plastic Ceramic	-40°C to +85°C -55°C to +125°C
Storage temperature range	-65°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.


Notes:

- Duty cycle is limited by the total power dissipated in the package. 1.
- 2. For operation above 25°C ambient derate linearly to maximum operating temperature at 25mW/°C for plastic and at 15mW/°C for ceramic.

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{ja}$
44-Lead Quad Cerpac	
44-Lead PLCC	37°C/W

Pin Configuration

L = Lot Number Bottom Marking C = Country of Origin* A = Assembler ID* 222222222222 *May be part of top marking

Package may or may not include the following marks: Si or 👘 44-Lead Quad Cerpac

AAA

Package may or may not include the following marks: Si or 44-Lead PLCC

Recommended Operating Conditions

Sym	Parameter		Min	Max	Units
V_{DD}	Logic supply voltage		10.8	13.2	V
V _{PP}	High voltage supply		-	230	V
	High lovel input veltage	V _{DD} = 10.8	8.1	-	V
V _{IH}	High-level input voltage	V _{DD} = 13.2	9.9	-	v
1/		V _{DD} = 10.8	-	2.7	V
V _{IL}	Low-level input voltage	V _{DD} = 13.2	-	3.3	v
f _{ськ}	Clock frequency		-	4.0	MHz
т	Operating free air temperature	Plastic	-40	+85	°C
T _A	Operating free-air temperature	Ceramic	-55	+125	
I _{op}	Allowable pulsed current through o	utput diode	-	±300	mA

Power-up sequence should be the following:

- 1. Connect ground.
- 2. Apply V_{DD} . 3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
- 4. Apply V_{PP}

(The $V_{_{PP}}$ should not drop below $V_{_{DD}}$ or float during operation.)

Power-down sequence should be the reverse of the above.

DC Electrical Characteristics (over recommended operating conditions of V_{DD} = 12V, V_{PP} = 230V, and T_A = 25°C unless noted)

Sym	Parameter		Min	Max	Units	Conditions
I _{DD}	V _{DD} supply current		-	10	mA	f _{CLK} = 4.0MHz, V _{DD} =13.2V
			-	4.0	mA	One output high ¹
I _{PP}	V _{PP} supply current		-	100		All outputs low or High-Z
PP		-	750	μA	All outputs low or High-Z (125°C)	
I _{DDQ}	Quiescent V_{DD} supply current	-	100	μA	All V _{IN} = GND or V _{DD}	
V	High-level output	HV _{out}	195	-	V	I _o = -70mA
V _{OH}	nign-level output	DATA OUT	11	-	V	Ι _o = -500μΑ
V		HV _{out}	-	30	V	I _o = +70mA
V _{OL}	Low-level output DATA OUT			1.0	V	Ι _o = +500μΑ
I _{IH}	High-level logic input current	-	1.0	μA	V _{IH} = 12V	
I _{IL}	Low-level logic input current		-	-1.0	μA	V _{IL} = 0V

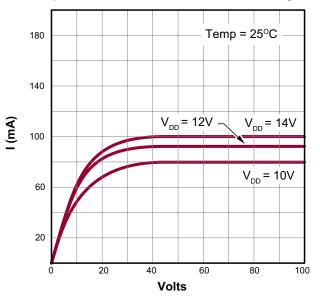
Note:

The total number of ON outputs times the duty cycle must not exceed the allowable package power dissipation. 1.

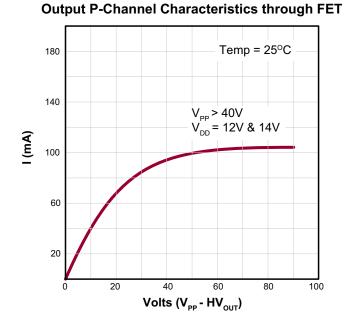
AC Electrical Characteristics (V_{DD} = 12V and T_A = 25°C)

Sym	Parameter	Min	Max	Units	Conditions
f _{ськ}	Clock frequency	-	4.0	MHz	
t _{wH} , t _{wL}	Pulse duration clock width high or low	125	-	ns	
t _{sud}	Data set-up time before falling clock	100	-	ns	
t _{HD}	Data hold time after falling clock	100	-	ns	
t _{suc}	Setup time clock low before $V_{_{PP}}\!\!\uparrow$ or $GND\!\!\downarrow$	300	-	ns	
t _{sue}	Setup time enable high before $V_{_{PP}}\uparrow$ or $GND\downarrow$	300	-	ns	
t _{sup}	Setup time polarity high or low before $V_{_{PP}}\uparrow$ or $GND\downarrow$	300	-	ns	
t _{HC}	Hold time clock high after $V_{_{PP}}\uparrow$ or $GND\downarrow$	500	-	ns	
t _{HE}	Hold time enable high after $V_{_{PP}} \uparrow$ or $\; GND {\downarrow}$	300	-	ns	
t _{HP}	Hold time polarity high or low after $V_{_{PP}}\uparrow$ or $~GND\downarrow$	300	-	ns	
t _{DHL}	Delay time high to low-level output from clock	-	150	ns	C _L = 10pF
t _{DLH}	Delay time low to high-level output from clock	-	200	ns	C _L = 10pF
t _{THL}	Transition time high to low-level serial output	-	200	ns	C _L = 15pF
t _{TLH}	Transition time low to high-level serial output	-	100	ns	C _L = 15pF
t _{onh}	High-level turn-on time $\mathrm{HV}_{\mathrm{OUT}}$ from enable	-	500	ns	$V_{_{OH}}$ = 195V, R _L = 2.0k Ω to 95V
t _{onl}	Low-level turn-on time $\mathrm{HV}_{\mathrm{out}}$ from enable	-	500	ns	V_{OH} = 130V, R_L = 2.0k Ω to 30V
t _{offh}	High-level turn-off time HV_{OUT} from enable	-	1000	ns	V_{OH} = 195V, R_L = 2.0k Ω to 95V
t _{offl}	Low-level turn-off time $\mathrm{HV}_{\mathrm{out}}$ from enable	-	500	ns	V_{OH} = 130V, R_L = 2.0k Ω to 30V
SR	Slew rate, $V_{_{PP}}$ or GND	-	45	V/µs	One active output driving 4.7nF load to $V_{_{\rm PP}}$ or GND

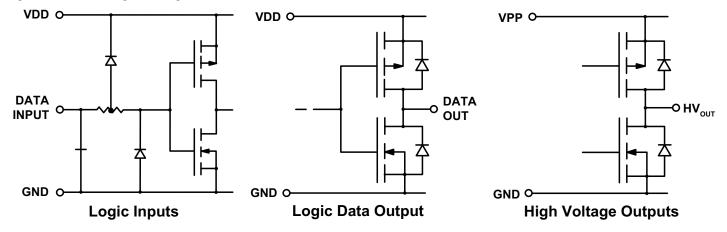
Function Table

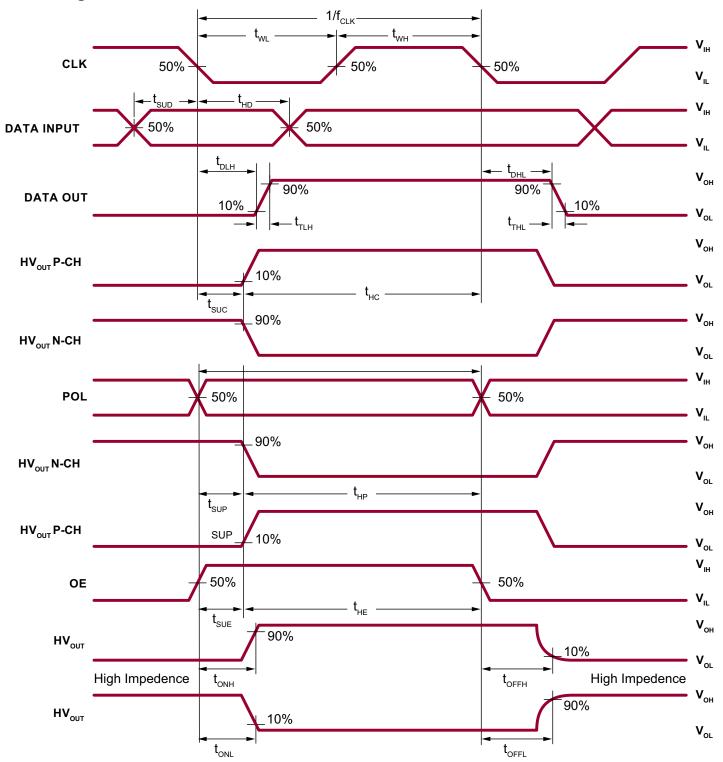

I/O Balatiana			Inputs			Outputs				
I/O Relations	CLK	DIR	DATA	POL	OE	Shift Reg	HV _{out}	DATA OUT		
O/P HIGH	Х	Х	н	н	н	*	* H			
O/P OFF	Х	Х	L	Н	Н	*	HIGH-Z	*		
O/P LOW	Х	Х	н	L	Н	*	L	*		
O/P OFF	Х	Х	L	L	Н	*	HIGH-Z	*		
O/P OFF	Х	Х	Х	Х	L	*	All O/P HIGH-Z	*		
	Ļ	L	Х	Х	Х	$Q_n \rightarrow Q_{n+1}$	*	Q ₃₄		
Load S/R, set DIR	\downarrow	Н	X	Х	Х	$Q_n \rightarrow Q_{n-1}$	*	Q ₁		
	No ↓	Х	X	Х	Х	*	No Change	No Change		

Notes:


H = logic high level, *L* = logic low level, *X* = irrelevant, \downarrow = high-to-low transition

 $Q1 = HV_{out}$, $Qn = HV_{out}$, etc. * = dependent on previous state and whether an O/P or S/R command occurred.

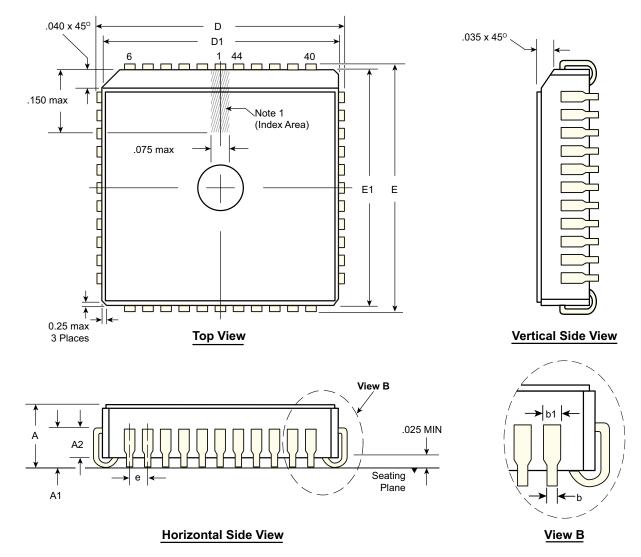

HV_{out} Characteristics


Output N-Channel Characteristics through FET

Input and Output Equivalent Circuits

Switching Waveforms

Pin Description

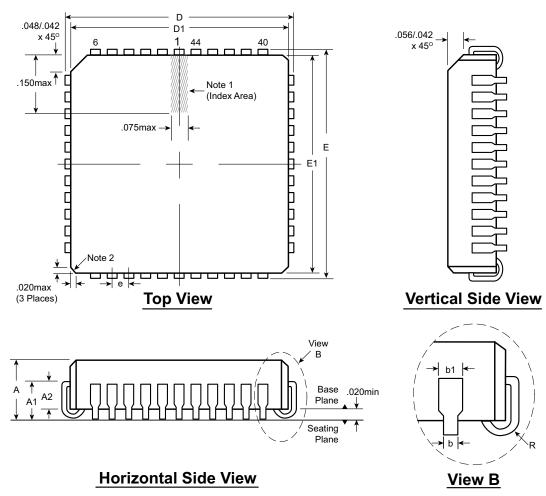

Pin #	Function	
1	HV _{out} 18/17	
2	HV _{out} 17/18	
3	HV _{out} 16/19	
4	HV _{out} 15/20	
5	HV _{out} 14/21	
6	HV _{out} 13/22	
7	HV _{out} 12/23	
8	HV _{out} 11/24	
9	HV _{out} 10/25	
10	HV _{out} 9/26	
11	HV _{out} 8/27	
12	HV _{out} 7/28	
13	HV _{out} 6/29	
14	HV _{out} 5/30	
15	HV _{out} 4/31	
16	HV _{out} 3/32	
17	HV _{out} 2/33	
18	HV _{out} 1/34	
19	DATA OUT	
20	OE	
21	CLK	
22	GND	

Pin #	Function
23	DIR
24	VDD
25	POL
26	DATA INPUT
27	VPP
28	NC
29	HV _{out} 34/1
30	HV _{out} 33/2
31	HV _{out} 32/3
32	HV _{out} 31/4
33	HV _{out} 30/5
34	HV _{out} 29/6
35	HV _{out} 28/7
36	HV _{out} 27/8
37	HV _{out} 26/9
38	HV _{out} 25/10
39	HV _{out} 24/11
40	HV _{out} 23/12
41	HV _{out} 22/13
42	HV _{out} 21/14
43	HV _{out} 20/15
44	HV _{out} 19/16

Note:

Pin designation for DIR H/L Example: For DIR = H, pin 1 is HV_{out} 18 For DIR = L, pin 1 is HV_{out} 17

44-Lead Quad Cerpac Package Outline (DJ) .650x.650in body, .190in height (max), .050in pitch


Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symb	ol	Α	A1	A2	b	b1	D	D1	E	E1	е
Dimension (inches)	MIN	.155	.090		.017	.026	.685	.630	.685	.630	050
	NOM	.172	.100	.060 REF	.019	.029	.690	.650	.690	.650	.050 BSC
	MAX	.190	.120		.021	.032	.695	.665	.695	.665	

JEDEC Registration MO-087, Variation AB, Issue B, August, 1991. Drawings not to scale. Supertex Doc. #: DSPD-44CERPACDJ, Version D090808.

44-Lead PLCC Package Outline (PJ) .653x.653in body, .180in height (max), .050in pitch

Notes:

- 1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- 2. Actual shape of this feature may vary.

Symb	ol	Α	A1	A2	b	b1	D	D1	E	E1	е	R
	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650		.025
Dimension (inches)	NOM	.172	.105	-	-	-	.690	.653	.690	.653	.050 BSC	.035
(inches)	MAX	.180	.120	.083	.021	.036†	.695	.656	.695	.656	200	.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc. #: DSPD-44PLCCPJ, Version F031111.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.